• Users Online: 627
  • Print this page
  • Email this page


 
 
Table of Contents
ORIGINAL ARTICLE
Year : 2018  |  Volume : 7  |  Issue : 4  |  Page : 187-191

Change of “Left atrium ejection force” after transcatheter “Atrial septal defect” closure using “AMPLATZER,” in pediatric patients


1 Department of Pediatrics, Taleghani Medical and Educational Center, Golestan University of Medical Sciences, Gorgan, Iran
2 Department of Pediatric Cardiology, Modarres Medical and Educational Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Department of Pediatric Cardiology, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran

Date of Web Publication31-Dec-2018

Correspondence Address:
Dr. Kourosh Vahidshahi
Modarres Medical and Educational Center, Saadat abad Blvd., Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/rcm.rcm_3_18

Get Permissions

  Abstract 


Background and Purpose: There has not been any study regarding atrial systolic function in transcatheter atrial septal defect (ASD) closure. The aim of this study was to survey left atrium ejection force in this procedure in the pediatric age group. Subjects and Methods: This was an observational (before and after) study. Pediatric patients who underwent transcatheter ASD closure using “AMPLATZER” at “Rajaei Cardiovascular Medical and Research Center,” from March to December 2013, were enrolled consecutively. Physical examination and transthoracic echocardiography were performed for the patients before and 12–24 h after the procedure, and left atrium ejection force was calculated. Results: Totally, 63 patients (age: 6.11 ± 3.43 [1–14] years and weight: 21.53 ± 10.79 [9.7–48] kg) were studied. ASD size was 11.43 ± 3.30 (5–22) mm. Left atrium ejection force, before and after the procedure, was 7.19 ± 6.06 (0.33–32.54) kilodyne and 6.30 ± 4.03 (0.5–18.16) kilodyne, respectively (P = 0.28). There was no significant difference between pre- and postprocedure left atrium ejection force in different age group, both genders, types of the device, and ASD size. Postprocedure left atrium ejection force was significantly lower in the patients with large devices (diameter of left atrial disk to body surface area ratio index >40 mm/m2) than smaller device. Conclusion: This study showed that left atrium ejection force after transcatheter ASD closure does not change significantly at early stage, so atrial systolic function is maintained in the presence of the device. In the patients with large device, left atrium ejection force may decrease.

Keywords: Atrial septal defect, device closure, left atrium ejection fraction


How to cite this article:
Esmaeili H, Vahidshahi K, Moradian M, Mortezaeian H. Change of “Left atrium ejection force” after transcatheter “Atrial septal defect” closure using “AMPLATZER,” in pediatric patients. Res Cardiovasc Med 2018;7:187-91

How to cite this URL:
Esmaeili H, Vahidshahi K, Moradian M, Mortezaeian H. Change of “Left atrium ejection force” after transcatheter “Atrial septal defect” closure using “AMPLATZER,” in pediatric patients. Res Cardiovasc Med [serial online] 2018 [cited 2019 Sep 21];7:187-91. Available from: http://www.rcvmonline.com/text.asp?2018/7/4/187/249052




  Introduction Top


Atrial septal defect (ASD) is the third common congenital heart disease and with the prevalence of 3.8/1000 lives birth and accounts for 6%–8% of congenital anomalies of the heart.[1],[2] For years, surgical closure has been the treatment of choice for ASD. In 1987, King et al. explained transcatheter ASD closure and in 1995, “AMPLATZER occluder device” was presented by Amplatz and Mashura.[2] In recent years, according to general risk of cardiac surgery (anesthesia, intubation, thoracotomy, and hospitalization), there is an increasing interest in transcatheter ASD closure,[3],[4],[5] and consequently, many studies have been performed regarding different aspects of this procedure, but there is not any study regarding left atrium function after transcatheter ASD closure in pediatric patients, so according to considerable role of left atrium function in the heart hemodynamics, also deficiency of relevant studies, we designed this study to survey left atrium ejection force before and after transcatheter ASD closure in pediatric patients.


  Subjects and Methods Top


This was a case series (“before” and after”) study which was performed cross-sectionally. The study population consisted of pediatric patients (1–16 years old) with the diagnosis of ASD, admitted at a university tertiary cardiology hospital, from March to December 2013, who underwent transcatheter ASD closure, using different type of the devices. Method of sampling was “simple” with “consecutive” inclusion. Exclusion criteria comprised any congenital heart anomaly other than ASD, pulmonary hypertension, severe mitral regurgitation, mitral cleft and any known syndrome, and all contraindications of transcatheter ASD closure.

Demographic and clinical data were gathered and recorded. Transthoracic echocardiography was performed by an academic pediatric cardiologist, with 3 and 7 MHZ transducer, before and after transcatheter ASD closure using Vivid 3 echocardiography unit (Medical GE system, USA). Left atrium ejection force was calculated based on Newton's law, as the method of Manning et al.[6] using conventional Doppler indices: left atrium ejection force = 1.3*Mitral valve area* (A wave peak velocity).[2]

Mean of three measurements recorded at patient's left atrium ejection force. After data collection, analysis were performed in SPSS 18 software (IBM, IL, USA) using appropriate statistical descriptive and analytical tools, paired t-test or Wilcoxon test was used for comparison of left atrium ejection force before and after transcatheter ASD closure, and independent test, Mann–Whitney, or ANOVA tests were used for comparison of left atrium ejection force between groups, appropriately. Chi-square test was used for grouped variables. P < 0.05 was considered statistically significant.


  Results Top


Of 65 patients who underwent transcatheter ASD closure from March to December 2013, the procedure was successful in 63 cases (enrolled samples). Forty-four patients (67.7%) were female, more than half of our patients were under 5 years. Data regarding age, weight, ASD, and device size are shown in [Table 1].
Table 1: Distribution of age, weight, body surface area, atrial septal defect, and device size

Click here to view


Regarding clinical manifestations

Nearly 87.5% of the patients were asymptomatic, among symptomatic patients, palpitation, fatigue, and dyspnea were the main symptoms. There was normal chest X-ray in 76.9% of the patients and also increased pulmonary vascular marking in the others regarding electrocardiogram: there was sinus rhythm in 100% and right axis in 7.7% of the patients regarding mitral valve, there was mitral regurgitation (trivial to mild) in 9.2% and 7.4% of the patients, pre- and postprocedure, respectively, also tricuspid regurgitation (predominantly mild) in 15.4% and 12.7%. The data regarding pre- and postprocedure left atrium ejection force to age group, gender, and indexed ASD sized are shown in [Table 2].
Table 2: Left atrium ejection force (kilodyne) before and after transcatheter atrial septal defect closure (pre- and postprocedure) to age group, gender, indexed atrial septal defect size

Click here to view


As seen, left atrium ejection force significantly increased with age, whereas there was no significant difference in left atrium ejection force before and after transcatheter ASD closure in all patients, also in subgroups.

For evaluating effect of device size on left atrium ejection force, we defined two indices – ratio of “device left atrium disc,” size to “body surface area” (mm/m2), and “device waist size” to “ interatrial septum size.” We surveyed measures of left atrium ejection force before and after transcatheter ASD closure to these two indices, also to three more common types of the devices [Table 3].
Table 3: Measures of left atrium ejection force before and after transcatheter atrial septal defect closure to two indices of device size and types of the devices

Click here to view


As seen “after procedure,” left atrium ejection force was significantly decreased in the patients with “diameter of left atrial disk to body surface area ratio index” more than 40 mm/m2. There were not any significant differences in left atrium ejection force between three commonly used types of devices.


  Discussion Top


In this study, changes of a hemodynamical parameter of left atrium function (left atrium ejection force) before and after transcatheter ASD closure in pediatric patients were surveyed.

Recently, increasing interest in transcatheter ASD closure, also technical progress in production of more appropriate devices, especially in pediatric age group, has resulted in performing many studies regarding different aspects of the procedure, including hemodynamic indices, such as surveying of right ventricle end-diastolic diameter (the study of Kaya et al.[7]), surveying of myocardial performance index (the study of Salehian et al.[8]), survey of metabolic indices (the study of Giardini et al.[9]), and some other studies.[10],[11],[12],[13],[14] Among these studies, although there were few studies regarding changes of atria after transcatheter ASD closure (“left atrium size” in the study of Salehian et al.[8]), there was not any published study regarding left atrium hemodynamic function.

In this way, gradually since two decades ago, according to different researches and evidence, the role of atria extended from “passive conduit” to other roles such as reservoir, active blood transport, and biochemical activity,[15],[16],[17],[18],[19] so general knowledge and interest about atria, especially left atrium in normal and pathological hemodynamics of the heart, were developed.[20],[21] Different indices can be used for surveying of left atrium function, such as “atrial systolic contribution to the mitral flow” and “pulmonary venous retrograde flow” evaluation of kinetic energy and also left atrial ejection force.[22],[23],[24],[25],[26],[27] Among them, left atrium ejection force is the most common parameter which is used in studies for surveying left atrium hemodynamical function. Evidence have shown that considerable amount of cardiac output (10%–30%), especially during activities, depends on systolic ejection of the left atrium, so changes of left atrium ejection force in different hemodynamical status of the heart may affect the global efficacy of cardiovascular system.[28],[29],[30],[31] There were some studies regarding changes of left atrium ejection force in different situations: the study of Cioffi et al.[32] (like our study) showed that left atrium ejection force increased with age, Triposkiadis et al.[33] studied left atrium ejection force in chronic heart failure and showed that in spite of decreased LA systolic shortening in the condition, because of increased LA size, globally, amount of left atrium ejection force increases, whereas Cioffi et al.[34] showed that increased left atrium ejection force in chronic heart failure is not related to left atrium size. The study of Mattioli et al.[35] indicated that left atrium ejection force is a reliable index for evaluation of returning left atrium mechanical function after cardioversion, Nemes et al.[36] surveyed left atrium ejection force in noncompaction cardiomyopathy, also Jahns et al.[37] Inoue et al.[38] and some others, studies left atrium ejection force in other situations.[39],[40]

Regarding changes of left atrium ejection force after transcatheter ASD closure in pediatric patients, we did not find any published evidence, hence this study is the first in this issue. Our study showed that left atrium ejection force did not change significantly after transcatheter ASD closure, for interpretation of this finding, and it is essential to consider possible factors which may affect left atrium ejection force in this condition; according to left atrium ejection force calculation formula and the evidence regarding effective indices on left atrium ejection force,[28],[29],[30],[31],[32],[33],[34],[35],[36],[37],[38],[39],[40] some factors can be considered for explaining left atrium ejection force changes after transcatheter ASD closure, including elasticity, stretching power, size of LA and LV and also blood volume. Change (decrease) in elasticity due to the presence of device as part of the interatrial septum may decrease left atrium ejection force after the procedure. Furthermore, stretching power from the “device left atrium disc” on muscular plain of left atrium can disturb left atrium systolic contraction and consequently can decrease left atrium ejection force. Considering all these factors, also our findings, while there was some decrease in left atrium ejection force after the procedure, this change was not significant, so it seems that previously mentioned effective factors cannot change left atrium ejection force significantly after transcatheter ASD closure, so based on these findings, it can be concluded that left atrium systolic function as important part of global hemodynamics of the heart is maintained in the presence of device at interatrial septum although more studies can determine the issue more clearly.

Our study also indicates that maintenance of left atrium ejection force after transcatheter ASD closure is true in different age group, both sexes, different types of the devices and different indexed sizes of ASDs.

Regarding effect of device size on left atrium ejection force, our data indicated that postprocedure left atrium ejection force was significantly lower in the device with “left atrium disc size” to “patient's body surface area” equal or more than 40 mm/m2 in comparison to smaller devices (the ratio <40 mm/m2) although there was no significant difference between pre- and postprocedure left atrium ejection force in both groups. This finding indicates that large “left atrium disk size” of the device may be a risk factor for impairment of left atrium function and decreasing left atrium ejection force.


  Conclusion Top


This study showed that transcatheter ASD closure in pediatric age group did not significantly affect left atrium ejection force, hence left atrium systolic function is maintained predominantly; furthermore, the study indicated that using devices with large left atrium disc size may be a risk factor for left atrium ejection force impairment.

There may be some limitations in our study. We surveyed left atrium ejection force at early phase after transcatheter ASD closure (12–24 h) after procedure although the evidence showed that hemodynamic remodeling is initiated at early postprocedure phase, late possible changes of left atrium ejection force after transcatheter ASD closure can be surveyed in the future studies; furthermore, our sample size may be a limiting factor.

Acknowledgment

The authors would like to thank the patients, the parents, and the nurses.

Financial support and sponsorship

This research received no specific grant from any funding agency, commercial, or not-for-profit sectors.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Gupta SK, Kothari SS. Prevalence of congenital heart disease. Indian J Pediatr 2013;80:337-9. doi: 10.1007/s12098-013-0970-6.  Back to cited text no. 1
    
2.
Sachdeva R. Atrial septal defect. In: Allen HD, Driscoll DJ, Shaddy RE, Feltes TF, editors. Moss and Adam's Heart Disease in Infants: Children and Adolescents. 8th ed. Philadelphia: Wolters Klucver, Lippin Cott Williams & Wilkins; 2013. p. 672-90.  Back to cited text no. 2
    
3.
Du ZD, Hijazi ZM, Kleinman CS, Silverman NH, Larntz K; Amplatzer Investigators, et al. Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: Results of a multicenter nonrandomized trial. J Am Coll Cardiol 2002;39:1836-44.  Back to cited text no. 3
    
4.
Celiker A, Ozkutlu S, Karagöz T, Ayabakan C, Bilgiç A. Transcatheter closure of interatrial communications with Amplatzer device: Results, unfulfilled attempts and special considerations in children and adolescents. Anadolu Kardiyol Derg 2005;5:159-64.  Back to cited text no. 4
    
5.
Rigatelli G, Dell'avvocata F, Cardaioli P, Braggion G, Giordan M, Mazza A, et al. Long-term results of the Amplatzer cribriform occluder for patent foramen ovale with associated atrial septal aneurysm: Impact on occlusion rate and left atrial functional remodelling. Am J Cardiovasc Dis 2012;2:68-74.  Back to cited text no. 5
    
6.
Manning WJ, Silverman DI, Katz SE, Douglas PS. Atrial ejection force: A noninvasive assessment of atrial systolic function. J Am Coll Cardiol 1993;22:221-5.  Back to cited text no. 6
    
7.
Kaya MG, Baykan A, Dogan A, Inanc T, Gunebakmaz O, Dogdu O, et al. Intermediate-term effects of transcatheter secundum atrial septal defect closure on cardiac remodeling in children and adults. Pediatr Cardiol 2010;31:474-82.  Back to cited text no. 7
    
8.
Salehian O, Horlick E, Schwerzmann M, Haberer K, McLaughlin P, Siu SC, et al. Improvements in cardiac form and function after transcatheter closure of secundum atrial septal defects. J Am Coll Cardiol 2005;45:499-504.  Back to cited text no. 8
    
9.
Giardini A, Donti A, Formigari R, Specchia S, Prandstraller D, Bronzetti G, et al. Determinants of cardiopulmonary functional improvement after transcatheter atrial septal defect closure in asymptomatic adults. J Am Coll Cardiol 2004;43:1886-91.  Back to cited text no. 9
    
10.
Monfredi O, Luckie M, Mirjafari H, Willard T, Buckley H, Griffiths L, et al. Percutaneous device closure of atrial septal defect results in veryearly and sustained changes of right and left heart function. Int J Cardiol 2013;167:1578-84.  Back to cited text no. 10
    
11.
Sadiq M, Kazmi T, Rehman AU, Latif F, Hyder N, Qureshi SA, et al. Device closure of atrial septal defect: Medium-term outcome with special reference to complications. Cardiol Young 2012;22:71-8.  Back to cited text no. 11
    
12.
Masura J, Gavora P, Podnar T. Long-term outcome of transcatheter secundum-type atrial septal defect closure using Amplatzer septal occluders. J Am Coll Cardiol 2005;45:505-7.  Back to cited text no. 12
    
13.
Mitchell AR, Roberts P, Eichhöfer J, Timperley J, Ormerod OJ. Echocardiographic assessment and percutaneous closure of multiple atrial septal defects. Cardiovasc Ultrasound 2004;2:9.  Back to cited text no. 13
    
14.
Bass JL, Gruenstein DH. Cardiac septal defects: Treatment via the Amplatzer family of devices. In: Iaizzo PA, editor. Handbook of Cardiac Anatomy, Physiology and Devices. Totowa, New Jersey: Humana Press; 2005. p. 571-82.  Back to cited text no. 14
    
15.
Faella HJ, Sciegata AM, Alonso JL, Jmelnitsky L. ASD closure with the Amplatzer device. J Interv Cardiol 2003;16:393-7.  Back to cited text no. 15
    
16.
Blume GG, Mcleod CJ, Barnes ME, Seward JB, Pellikka PA, Bastiansen PM, et al. Left atrial function: Physiology, assessment, and clinical implications. Eur J Echocardiogr 2011;12:421-30.  Back to cited text no. 16
    
17.
Spencer KT, Mor-Avi V, Gorcsan J 3rd, De Maria AN, Kimball TR, Monaghan MJ, et al. Effects of aging on left atrial reservoir, conduit, and booster pump function: A multi-institution acoustic quantification study. Heart 2001;85:272-7.  Back to cited text no. 17
    
18.
Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM. Natriuretic peptides: Their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol 2009; (191):341-66.  Back to cited text no. 18
    
19.
Stefanadis C, Dernellis J, Toutouzas P. A clinical appraisal of left atrial function. Eur Heart J 2001;22:22-36.  Back to cited text no. 19
    
20.
Abhayaratna WP, Seward JB, Appleton CP, Douglas PS, Oh JK, Tajik AJ, et al. Left atrial size: Physiologic determinants and clinical applications. J Am Coll Cardiol 2006;47:2357-63.  Back to cited text no. 20
    
21.
Tsang TS, Abhayaratna WP, Barnes ME, Miyasaka Y, Gersh BJ, Bailey KR, et al. Prediction of cardiovascular outcomes with left atrial size: Is volume superior to area or diameter? J Am Coll Cardiol 2006;47:1018-23.  Back to cited text no. 21
    
22.
Khankirawatana B, Khankirawatana S, Peterson B, Mahrous H, Porter TR. Peak atrial systolic mitral annular velocity by Doppler tissue reliably predicts left atrial systolic function. J Am Soc Echocardiogr 2004;17:353-60.  Back to cited text no. 22
    
23.
Zhang Q, Yip GW, Yu CM. Approaching regional left atrial function by tissue Doppler velocity and strain imaging. Europace 2008;10 Suppl 3:iii62-9.  Back to cited text no. 23
    
24.
Telagh R, Hui W, Abd El Rahman M, Berger F, Lange PE, Abdul-Khaliq H, et al. Assessment of regional atrial function in patients with hypertrophic cardiomyopathies using tissue Doppler imaging. Pediatr Cardiol 2008;29:301-8.  Back to cited text no. 24
    
25.
Yu CM, Fung JW, Zhang Q, Kum LC, Lin H, Yip GW, et al. Tissue Doppler echocardiographic evidence of atrial mechanical dysfunction in coronary artery disease. Int J Cardiol 2005;105:178-85.  Back to cited text no. 25
    
26.
Nakatani S, Garcia MJ, Firstenberg MS, Rodriguez L, Grimm RA, Greenberg NL, et al. Noninvasive assessment of left atrial maximum dP/dt by a combination of transmitral and pulmonary venous flow. J Am Coll Cardiol 1999;34:795-801.  Back to cited text no. 26
    
27.
Stefanadis C, Dernellis J, Lambrou S, Toutouzas P. Left atrial energy in normal subjects, in patients with symptomatic mitral stenosis, and in patients with advanced heart failure. Am J Cardiol 1998;82:1220-3.  Back to cited text no. 27
    
28.
Chinali M, de Simone G, Wachtell K, Gerdts E, Gardin JM, Boman K, et al. Left atrial systolic force in hypertensive patients with left ventricular hypertrophy: The LIFE study. J Hypertens 2008;26:1472-6.  Back to cited text no. 28
    
29.
Kiani A, Kocharian A, Shabanian R, Rahimzadeh M, Shakibi JG. Left atrial ejection force in healthy newborn infants. J Am Soc Echocardiogr 2008;21:725-8.  Back to cited text no. 29
    
30.
Dardas PS, Pitsis AA, Tsikaderis DD, Mezilis NE, Geleris PN, Boudoulas HK, et al. Left atrial volumes, function and work before and after mitral valve repair in chronic mitral regurgitation. J Heart Valve Dis 2004;13:27-32.  Back to cited text no. 30
    
31.
Chinali M, de Simone G, Roman MJ, Bella JN, Liu JE, Lee ET, et al. Left atrial systolic force and cardiovascular outcome. The strong heart study. Am J Hypertens 2005;18:1570-6.  Back to cited text no. 31
    
32.
Cioffi G, Chinali M, Mureddu GF, Stefenelli C, de Simone G. Left atrial systolic force: Comparison between two methods for the noninvasive assessment of left atrial systolic function. J Cardiovasc Med (Hagerstown) 2008;9:601-7.  Back to cited text no. 32
    
33.
Triposkiadis F, Harbas C, Sitafidis G, Skoularigis J, Demopoulos V, Kelepeshis G, et al. Echocardiographic assessment of left atrial ejection force and kinetic energy in chronic heart failure. Int J Cardiovasc Imaging 2008;24:15-22.  Back to cited text no. 33
    
34.
Cioffi G, Gerdts E, Cramariuc D, Tarantini L, Di Lenarda A, Pulignano G, et al. Left atrial size and force in patients with systolic chronic heart failure: Comparison with healthy controls and different cardiac diseases. Exp Clin Cardiol 2010;15:e45-51.  Back to cited text no. 34
    
35.
Mattioli AV, Castelli A, Sternieri S, Mattioli G. Doppler sonographic evaluation of left atrial function after cardioversion of atrial fibrillation. J Ultrasound Med 1999;18:289-94.  Back to cited text no. 35
    
36.
Nemes A, Anwar AM, Caliskan K, Soliman OI, van Dalen BM, Geleijnse ML, et al. Evaluation of left atrial systolic function in noncompaction cardiomyopathy by real-time three-dimensional echocardiography. Int J Cardiovasc Imaging 2008;24:237-42.  Back to cited text no. 36
    
37.
Jahns R, Naito J, Tony HP, Inselmann G. Atrial ejection force in systemic autoimmune diseases. Cardiology 1999;92:269-74.  Back to cited text no. 37
    
38.
Inoue J, Ogata T, Ohtsubo Y, Tokushima T, Tsuji S, Utsunomiga T, et al. Left atrial ejection force (LAEF) in patients with hypetension: LAEF is decreased in hypertensive patients with left ventricular failure or atrial fibrillation. J Clin Basic Cardiol 2002;5:237-40.  Back to cited text no. 38
    
39.
Shabanian R, Aboozari M, Kiani A, Seifirad S, Zamani G, Nahalimoghaddam A, et al. Myocardial performance index and atrial ejection force in patients with Duchenne's muscular dystrophy. Echocardiography 2011;28:1088-94.  Back to cited text no. 39
    
40.
Shabanian R, Heidari-Bateni G, Kocharian A, Mashayekhi M, Hosseinzadeh S, Kiani A, et al. Augmentation of left atrial contractile function: A herald of iron overload in patients with beta thalassemia major. Pediatr Cardiol 2010;31:680-8.  Back to cited text no. 40
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Introduction
Subjects and Methods
Results
Discussion
Conclusion
References
Article Tables

 Article Access Statistics
    Viewed430    
    Printed67    
    Emailed0    
    PDF Downloaded68    
    Comments [Add]    

Recommend this journal